3.83 \(\int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx\)

Optimal. Leaf size=103 \[ \frac {b^2 \left (3 a^2-b^2\right ) \tan (c+d x)}{d}-\frac {4 a b \left (a^2-b^2\right ) \log (\cos (c+d x))}{d}+x \left (a^4-6 a^2 b^2+b^4\right )+\frac {b (a+b \tan (c+d x))^3}{3 d}+\frac {a b (a+b \tan (c+d x))^2}{d} \]

[Out]

(a^4-6*a^2*b^2+b^4)*x-4*a*b*(a^2-b^2)*ln(cos(d*x+c))/d+b^2*(3*a^2-b^2)*tan(d*x+c)/d+a*b*(a+b*tan(d*x+c))^2/d+1
/3*b*(a+b*tan(d*x+c))^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3086, 3482, 3528, 3525, 3475} \[ \frac {b^2 \left (3 a^2-b^2\right ) \tan (c+d x)}{d}-\frac {4 a b \left (a^2-b^2\right ) \log (\cos (c+d x))}{d}+x \left (-6 a^2 b^2+a^4+b^4\right )+\frac {b (a+b \tan (c+d x))^3}{3 d}+\frac {a b (a+b \tan (c+d x))^2}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4*(a*Cos[c + d*x] + b*Sin[c + d*x])^4,x]

[Out]

(a^4 - 6*a^2*b^2 + b^4)*x - (4*a*b*(a^2 - b^2)*Log[Cos[c + d*x]])/d + (b^2*(3*a^2 - b^2)*Tan[c + d*x])/d + (a*
b*(a + b*Tan[c + d*x])^2)/d + (b*(a + b*Tan[c + d*x])^3)/(3*d)

Rule 3086

Int[cos[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Symb
ol] :> Int[(a + b*Tan[c + d*x])^n, x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && IntegerQ[n] && NeQ[a^2 + b
^2, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3482

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a + b*Tan[c + d*x])^(n - 1))/(d*(n - 1)
), x] + Int[(a^2 - b^2 + 2*a*b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ
[a^2 + b^2, 0] && GtQ[n, 1]

Rule 3525

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c - b
*d)*x, x] + (Dist[b*c + a*d, Int[Tan[e + f*x], x], x] + Simp[(b*d*Tan[e + f*x])/f, x]) /; FreeQ[{a, b, c, d, e
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rubi steps

\begin {align*} \int \sec ^4(c+d x) (a \cos (c+d x)+b \sin (c+d x))^4 \, dx &=\int (a+b \tan (c+d x))^4 \, dx\\ &=\frac {b (a+b \tan (c+d x))^3}{3 d}+\int (a+b \tan (c+d x))^2 \left (a^2-b^2+2 a b \tan (c+d x)\right ) \, dx\\ &=\frac {a b (a+b \tan (c+d x))^2}{d}+\frac {b (a+b \tan (c+d x))^3}{3 d}+\int (a+b \tan (c+d x)) \left (a \left (a^2-3 b^2\right )+b \left (3 a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=\left (a^4-6 a^2 b^2+b^4\right ) x+\frac {b^2 \left (3 a^2-b^2\right ) \tan (c+d x)}{d}+\frac {a b (a+b \tan (c+d x))^2}{d}+\frac {b (a+b \tan (c+d x))^3}{3 d}+\left (4 a b \left (a^2-b^2\right )\right ) \int \tan (c+d x) \, dx\\ &=\left (a^4-6 a^2 b^2+b^4\right ) x-\frac {4 a b \left (a^2-b^2\right ) \log (\cos (c+d x))}{d}+\frac {b^2 \left (3 a^2-b^2\right ) \tan (c+d x)}{d}+\frac {a b (a+b \tan (c+d x))^2}{d}+\frac {b (a+b \tan (c+d x))^3}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.40, size = 105, normalized size = 1.02 \[ \frac {-6 b^2 \left (b^2-6 a^2\right ) \tan (c+d x)+12 a b^3 \tan ^2(c+d x)+3 i (a-i b)^4 \log (\tan (c+d x)+i)-3 i (a+i b)^4 \log (-\tan (c+d x)+i)+2 b^4 \tan ^3(c+d x)}{6 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4*(a*Cos[c + d*x] + b*Sin[c + d*x])^4,x]

[Out]

((-3*I)*(a + I*b)^4*Log[I - Tan[c + d*x]] + (3*I)*(a - I*b)^4*Log[I + Tan[c + d*x]] - 6*b^2*(-6*a^2 + b^2)*Tan
[c + d*x] + 12*a*b^3*Tan[c + d*x]^2 + 2*b^4*Tan[c + d*x]^3)/(6*d)

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 119, normalized size = 1.16 \[ \frac {3 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} d x \cos \left (d x + c\right )^{3} + 6 \, a b^{3} \cos \left (d x + c\right ) - 12 \, {\left (a^{3} b - a b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (-\cos \left (d x + c\right )\right ) + {\left (b^{4} + 2 \, {\left (9 \, a^{2} b^{2} - 2 \, b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="fricas")

[Out]

1/3*(3*(a^4 - 6*a^2*b^2 + b^4)*d*x*cos(d*x + c)^3 + 6*a*b^3*cos(d*x + c) - 12*(a^3*b - a*b^3)*cos(d*x + c)^3*l
og(-cos(d*x + c)) + (b^4 + 2*(9*a^2*b^2 - 2*b^4)*cos(d*x + c)^2)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [A]  time = 0.38, size = 104, normalized size = 1.01 \[ \frac {b^{4} \tan \left (d x + c\right )^{3} + 6 \, a b^{3} \tan \left (d x + c\right )^{2} + 18 \, a^{2} b^{2} \tan \left (d x + c\right ) - 3 \, b^{4} \tan \left (d x + c\right ) + 3 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} {\left (d x + c\right )} + 6 \, {\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="giac")

[Out]

1/3*(b^4*tan(d*x + c)^3 + 6*a*b^3*tan(d*x + c)^2 + 18*a^2*b^2*tan(d*x + c) - 3*b^4*tan(d*x + c) + 3*(a^4 - 6*a
^2*b^2 + b^4)*(d*x + c) + 6*(a^3*b - a*b^3)*log(tan(d*x + c)^2 + 1))/d

________________________________________________________________________________________

maple [A]  time = 1.92, size = 145, normalized size = 1.41 \[ a^{4} x +\frac {a^{4} c}{d}-\frac {4 a^{3} b \ln \left (\cos \left (d x +c \right )\right )}{d}-6 a^{2} b^{2} x +\frac {6 a^{2} b^{2} \tan \left (d x +c \right )}{d}-\frac {6 a^{2} b^{2} c}{d}+\frac {2 a \,b^{3} \left (\tan ^{2}\left (d x +c \right )\right )}{d}+\frac {4 a \,b^{3} \ln \left (\cos \left (d x +c \right )\right )}{d}+\frac {b^{4} \left (\tan ^{3}\left (d x +c \right )\right )}{3 d}-\frac {b^{4} \tan \left (d x +c \right )}{d}+b^{4} x +\frac {b^{4} c}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4*(a*cos(d*x+c)+b*sin(d*x+c))^4,x)

[Out]

a^4*x+1/d*a^4*c-4/d*a^3*b*ln(cos(d*x+c))-6*a^2*b^2*x+6*a^2*b^2*tan(d*x+c)/d-6/d*a^2*b^2*c+2*a*b^3*tan(d*x+c)^2
/d+4*a*b^3*ln(cos(d*x+c))/d+1/3*b^4*tan(d*x+c)^3/d-b^4*tan(d*x+c)/d+b^4*x+1/d*b^4*c

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 116, normalized size = 1.13 \[ \frac {3 \, {\left (d x + c\right )} a^{4} - 18 \, {\left (d x + c - \tan \left (d x + c\right )\right )} a^{2} b^{2} + {\left (\tan \left (d x + c\right )^{3} + 3 \, d x + 3 \, c - 3 \, \tan \left (d x + c\right )\right )} b^{4} - 6 \, a b^{3} {\left (\frac {1}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right )^{2} - 1\right )\right )} - 6 \, a^{3} b \log \left (-\sin \left (d x + c\right )^{2} + 1\right )}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a*cos(d*x+c)+b*sin(d*x+c))^4,x, algorithm="maxima")

[Out]

1/3*(3*(d*x + c)*a^4 - 18*(d*x + c - tan(d*x + c))*a^2*b^2 + (tan(d*x + c)^3 + 3*d*x + 3*c - 3*tan(d*x + c))*b
^4 - 6*a*b^3*(1/(sin(d*x + c)^2 - 1) - log(sin(d*x + c)^2 - 1)) - 6*a^3*b*log(-sin(d*x + c)^2 + 1))/d

________________________________________________________________________________________

mupad [B]  time = 1.79, size = 546, normalized size = 5.30 \[ \frac {\frac {3\,a^4\,\cos \left (c+d\,x\right )\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2}-\frac {b^4\,\sin \left (3\,c+3\,d\,x\right )}{3}+\frac {3\,b^4\,\cos \left (c+d\,x\right )\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2}-\frac {a\,b^3\,\cos \left (3\,c+3\,d\,x\right )}{2}+\frac {3\,a^2\,b^2\,\sin \left (c+d\,x\right )}{2}+\frac {a^4\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (3\,c+3\,d\,x\right )}{2}+\frac {b^4\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (3\,c+3\,d\,x\right )}{2}+\frac {3\,a^2\,b^2\,\sin \left (3\,c+3\,d\,x\right )}{2}+\frac {a\,b^3\,\cos \left (c+d\,x\right )}{2}+3\,a\,b^3\,\ln \left (-\frac {\cos \left (c+d\,x\right )}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )\,\cos \left (c+d\,x\right )-3\,a^3\,b\,\ln \left (-\frac {\cos \left (c+d\,x\right )}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )\,\cos \left (c+d\,x\right )-3\,a^2\,b^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (3\,c+3\,d\,x\right )-3\,a\,b^3\,\cos \left (c+d\,x\right )\,\ln \left (\frac {1}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )+3\,a^3\,b\,\cos \left (c+d\,x\right )\,\ln \left (\frac {1}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )+a\,b^3\,\ln \left (-\frac {\cos \left (c+d\,x\right )}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )\,\cos \left (3\,c+3\,d\,x\right )-a^3\,b\,\ln \left (-\frac {\cos \left (c+d\,x\right )}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )\,\cos \left (3\,c+3\,d\,x\right )-a\,b^3\,\ln \left (\frac {1}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )\,\cos \left (3\,c+3\,d\,x\right )+a^3\,b\,\ln \left (\frac {1}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )\,\cos \left (3\,c+3\,d\,x\right )-9\,a^2\,b^2\,\cos \left (c+d\,x\right )\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (\frac {3\,\cos \left (c+d\,x\right )}{4}+\frac {\cos \left (3\,c+3\,d\,x\right )}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*cos(c + d*x) + b*sin(c + d*x))^4/cos(c + d*x)^4,x)

[Out]

((3*a^4*cos(c + d*x)*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/2 - (b^4*sin(3*c + 3*d*x))/3 + (3*b^4*cos(c
+ d*x)*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/2 - (a*b^3*cos(3*c + 3*d*x))/2 + (3*a^2*b^2*sin(c + d*x))/
2 + (a^4*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*cos(3*c + 3*d*x))/2 + (b^4*atan(sin(c/2 + (d*x)/2)/cos(c/
2 + (d*x)/2))*cos(3*c + 3*d*x))/2 + (3*a^2*b^2*sin(3*c + 3*d*x))/2 + (a*b^3*cos(c + d*x))/2 + 3*a*b^3*log(-cos
(c + d*x)/cos(c/2 + (d*x)/2)^2)*cos(c + d*x) - 3*a^3*b*log(-cos(c + d*x)/cos(c/2 + (d*x)/2)^2)*cos(c + d*x) -
3*a^2*b^2*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*cos(3*c + 3*d*x) - 3*a*b^3*cos(c + d*x)*log(1/cos(c/2 +
(d*x)/2)^2) + 3*a^3*b*cos(c + d*x)*log(1/cos(c/2 + (d*x)/2)^2) + a*b^3*log(-cos(c + d*x)/cos(c/2 + (d*x)/2)^2)
*cos(3*c + 3*d*x) - a^3*b*log(-cos(c + d*x)/cos(c/2 + (d*x)/2)^2)*cos(3*c + 3*d*x) - a*b^3*log(1/cos(c/2 + (d*
x)/2)^2)*cos(3*c + 3*d*x) + a^3*b*log(1/cos(c/2 + (d*x)/2)^2)*cos(3*c + 3*d*x) - 9*a^2*b^2*cos(c + d*x)*atan(s
in(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(d*((3*cos(c + d*x))/4 + cos(3*c + 3*d*x)/4))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4*(a*cos(d*x+c)+b*sin(d*x+c))**4,x)

[Out]

Timed out

________________________________________________________________________________________